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Summary 

One of the  basic  assumptions  underlying  all  cohesive  crack  models  used in the 
description of inelastic  fracture has to do  with  the  shape of the  cohesive  force 
distribution.  The  exact  form of this  distribution is unknown, but  several  very  usefbl  clues 
are  provided by the  experimental  work on fracture  at  interfhces,  cf.  Hutchinson [l]. In 
principle it  could be derived  fkom  considerations of the  molecular  forces  exchanged 
between  two  adjacent  planes of atoms  which  are  subject to separation as the  leading  edge 
of the  crack  propagates  along  the  interface. 

We shall  return to this  point  after  some  mathematical  preliminaries.  The  condition 
of finite  stress  at  the  tip of the  extended  crack, 1x1- (a visible  crack  stretches  along [XI-), 
valid  for  the  stress boundary conditions 

can be set  up as follows 

If  the  stress  distribution  S(x)  is  normalized by the  reference  cohesive  stress SO, say  S(x) = 
SoG(x), then Eq. (2) reduces to 
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When  the  variable  x is replaced  by XI, x = x1 + c, Eq. (3) reads 

or,  better  yet 

G(A)(l - m)dA 

Here, h = xl/a and  m  is  a  parameter  related to the  crack  length c and the  length of 
the  extended  crack,  a = c + R, namely,  m = c/a.  In  what  follows  we  shall  limit  the 
considerations  to  the case of R<<c, i.e., for m+  1,  which is pertinent  for  “small  scale 
yield  condition”  met  in  all cases of practical  importance  in  the  context of Materials 
Science.  For  this limiting case  the  integral  in Eq. (5) can be simplified as follows 

Valuable  clues  regarding  the  distribution G(h) are gained h m  studies of fracture 
occurring at the  interface  between two dissimilar  materials  joined  together  either  by 
direct  adhesion or by a  thin  bonding  film.  In  order  to  account  for  the  experimental  data, 
two  main  features  are  expected.  First,  the  stress S should  reach  a  maximum  at  a  certain 
distance A from  the  crack  front. This maximum  stress S, may  in  some  cases  become 
substantially  larger  than  the  reference  stress SO. It  is  assumed  that S,, is  attained 
somewhere within the  process  zone,  most  likely  at  its  outer  edge, x1 = A. To the  left of 
this  point S drops off rapidly to zero to match  the  boundary  condition of stress-fke crack 
at x1 = 0, while to the  right of this  point S falls  down  again  and  levels  out  at  the  value SO, 
toward  the  end of the  cohesive  zone, XI= R. 

In  order to account  for  such  behavior  we  propose  a  strongly  nonlinear fkction 
composed of a  power  fbnction  and  an  exponential.  We  submit,  therefore,  a  two-parameter 
distribution  fbnction of this  form 
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in  where a and n  are yet  undetermined  parameters.  This  function  is  now  substituted  into 
Eq. (6), yielding 

Note  that  for  m +l, the  expression  (m-  1)  can be replaced by  R/c,  while  the  integral in 
Eq. (8) can be cast  into  a  closed form, cf. [2] 

Here  the  standard  notation  for  the  gamma  function (r) and  the  hypergeometric 
function ( F1)  is used, cf. [3]. Physical  interpretation  of  the  integral (9) leads  to  the 
energy  dissipated  within  the  cohesive  zone,  hence  the  symbol W. Finally,  combining  Eqs. 
(8) and (9) allows  us to define  the  length of the  cohesive  zone 

When KI attains  its  critical  level KI,, the  Eq.  (10)  predicts  the  characteristic 
microstructural  length  parameter, & = (x/~W~)(KIJSO)~. 

The  primary  conclusions of this  contribution  can be summarized as follows: 

(1) A generalization  has  been  proposed  that  encompasses all previous  cohesive 
crack  models  and  provides  a  platform  for  novel  investigations  of  the  influence 
of the  structured  nature of the  nonlinear  zone on the  early  stages of fracture. 

(2) By proper  choice of parameters a and  n  we are able to quantify  the  inner 
structure of the  cohesive  zone,  the  so-called  “fine  structure”,  which  accounts 
for  the  existence of the  small  process  zone of size A embedded  within  the 
larger  R-zone. 



i 

(3) Microstructure of material  is  now  represented  by  properties  such as the 
overstress  factor, k = S-/So and  the  ductility  parameter, p = Rhi/A,  in  which 
b i  denotes  the  threshold  value of R associated  with  the  onset  of hcture. 

For  a  given k and p, the  parameters  that  determine  the shape of the  S-distribution, 
a and n, can be evaluated  explicitly by  matching  the  ratio S-/So = (n/a)"exp(a - n)  with 
the  given  overstress  factor, k. Solving  the  equation 

for  the  coefficient a, we  obtain 

a = L h ( k p n )  
P-1 

Since a/n represents  the  reciprocal of the  coordinate h at  which  the maximum in S 
occurs, we  have 

Combining it with  Eq. (1 2) results  in  transcendental  equation 

nco -1) 
h(k pn)- p = 0 

For any  given  input  set of data,  such as specified p and k, the  other  two  variables, 
a and n, can  be  solved  for  (numerically, of course).  Since  the  input  parameters  are 
deduced  fiom  the  microstructural  data,  and  can be  measured  experimentally,  the  fine 
structure  characteristics a and  n are not  accessible to an  experiment,  we  have  provided a 
link  between  the  two  sets of parameters  pertaining to micro-level of fiacture.  The  next 
step, of course, is to evaluate  the  macro-level  entities  such as W and  R.  Our  model makes 
these  calculations  possible,  too. And  thus,  we  have  indeed  constructed  a  bridge  between 
the  micro-  and  macro-scales of fiacture  representation. 

To illustrate  this  statement,  we  set p = 10 and k = 5, and  then  using  the  equations 
written  above,  we obtain n = 0.2403 and a = pn = 2.403 1, while  the  nondimensional 
dissipation of energy  for  those  microstructural  in  ut  data  is W (a, n) = 4.4805, and  the 
length of the  nonlinear  zone  is R = 0.3506(K&1) . P 

Finally,  Figure 1 shows  the  predicted  shape of the G-hction, which  represents  a 
nondimensional  cohesive  force  distribution  within  the  R-zone  for  the  choice  of  micro- 
parameters  used  in our sample  calculation. 
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Figure 1 : Distribution of the coheslve  force S(h)/So within  the R-zone for 
the following meso-structural parameters:- ductility  index, p = 10, and - 
overstress fhctor, k = 5. 


